52. N-Queens II
N-Queens II
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
Solution
public class Solution {
public int totalNQueens(int n) {
List<List<String>> result = new ArrayList<>();
int[] status = new int[n];
for(int i = 0; i < n; i ++) {
status[i] = -1;
}
NQueen(result, status, 0, n, new ArrayList<>());
return result.size();
}
public void NQueen(List<List<String>> result, int[] status, int row, int n, List<String> current) {
if (row == n) {
List<String> newList = new ArrayList<>();
result.add(newList);
} else {
for (int i = 0; i < n; i++) {
if (isValid(status, row, i)) {
status[row] = i;
current.add(calculate(n, i));
NQueen(result, status, row + 1, n, current);
current.remove(current.size() - 1);
}
}
}
}
public boolean isValid(int[] status, int row, int column) {
for (int i = 0; i < row; i++) {
int oldColumn = status[i];
if (oldColumn == column) {
return false;
}
int rowSize = row - i;
int columnSize = Math.abs(oldColumn - column);
if (rowSize == columnSize) {
return false;
}
}
return true;
}
public String calculate(int n, int i) {
StringBuffer sb = new StringBuffer();
for (int j = 0; j < n; j++) {
if (j == i) {
sb.append("Q");
} else {
sb.append(".");
}
}
return sb.toString();
}
}
Last updated